Turnout and Crossings

Dr. Ahmed A. Khalil
$4^{\text {th }}$ year Civil
Week 13

Turnouts \& Crossings in a Yard

Electric Left Turnout

Manual Handling Right Turnout

Right and Left Turnouts

1- Switch part
2- Middle (Lead) part
3- Crossing part

-The long, continuous rails that form the outside edges of the switch are called the stock rails.
-The movable parts that route the trains one way or the other are called the points or point blades. The throw bar or tie bar ties the points together and controls their movement from side to side.
-The crossing in the middle where the rails meet is called the frog.
-The rails between the points and the frog are called the closure rails.
-The small lengths of rail along the stock rails (opposite the frog) are called checkrails or guard rails. These keep the wheels from "picking the frog" and heading the wrong way, leading to a derailment.

On a typical switch, the straight path is called the main route, and the path that curves away is called the diverging route.

In a railroad, the sharpness of this divergent route is identified in one of two ways: either in terms of the radius, or by a number. The larger the frog angle, the wider is the switch.

- A guard rail (check rail) is a short piece of rail placed alongside the main (stock) rail opposite the frog.
- These exist to ensure that the wheels follow the appropriate flangeway through
 the frog and that the train does not derail.
- Generally, there are two of these for each frog, one by each outer rail.

Turnout Operation

Facing and Trailing

LEGEND
F $=$ Facing
$\mathrm{T}=\mathrm{Trailing}$
$\mathrm{D}=\mathrm{D}$ famond

- Points can be moved laterally into one of two positions so as to determine whether a train coming from the narrow end will be led towards the straight path or towards the diverging path.
- A train moving from the narrow end towards the point blades is said to be executing a facing-point movement.

Unless the switch is locked, a train coming from either of the converging directs will pass through the points onto the narrow end, regardless of the position of the points, as the vehicle's wheels will force the points to move. Passage through a switch in this direction is known as a trailingpoint movement.

Various factors limiting speeds over turnouts are as follows

A-Kink in the turnout route at the toe of switch rail
B-Entry from straight to curve without transition
C- Lead curve without super-elevation
D-Entry from curve to straight without transition
E-Gap at the V of crossing

Straight switches

Partly curved switches

Intersecting type

Tangential type

Type s of crossing (Frog)

lead curve may take one of the following forms:
1- Simple Circular Curve
2- Partly Curved, having a straight length near the crossing
3- Transition Curve

FABRICATED CROSSING

DRAWN FOR R H POINT RAII

COMPOUND MANGANESE NOSE CROSSING

FABRICATED SWING NOSE CROSSING

SOLID CAST MANGANESE CROSSING

- Abbreviations to be used
S.J/SRJ

TTS

ATS

B

SL
TSL
t
d

ANC
TNC
HOC
w

F
G
D
\mathbf{R}_{m}
$\mathbf{R}_{\text {c }}$

Stock joint/stock rail joint
Theoretical toe of switch
Actual toe of switch
Switch angle
Actual switch length
Theoretical switch length
Designed thickness of the switch at toe
Heel divergence
Actual nose of crossing
Theoretical nose of crossing
Heel of crossing
Length of straight leg of crossing ahead of TNC upto the tangent point of lead curve

Crossing angle
Gauge of the track
Distance between the track
Radius of the outer rail of curved main line
Radius of the outer rail of the turn in curve/ connecting curve

Radius of the outer rail of the lead curve

OL
 Over all length of the layout

S
Length of straight portion outside the turnout
A
Distance from 'SJ' to the point of intersection in a turnout measured along the straight

B
Distance from the point of intersection to the heel of crossing measured along the straight

K Distance from TNC of the crossing to the heel of crossing measured along the straight

Representation of a turnout on centre line

On the centre line the turnout is represented by two lines OPN1 W and PN2 Z. In this OW represents the overall length of turnout from SJ to the heel of crossing along the gauge line on which the crossing lies. To locate the turnouts on centre line method, it will be necessary to khowthe different components of centre line representation.

$$
\begin{aligned}
& \mathrm{OP}=\mathrm{A} \\
& \mathrm{PN} 1=\mathrm{PN} 2=\mathrm{M} \\
& \mathrm{~N} 1 \mathrm{~W}=\mathrm{N} 2 \mathrm{Z}=\mathrm{K} \\
& \mathrm{PW}=\mathrm{PZ}=\mathrm{B}=\mathrm{M}+\mathrm{K}
\end{aligned}
$$

Where $\mathbf{A}, \mathrm{M} \& \mathrm{~K}$ are known as turnout parameters
' M ' is the distance from ' P ' to the stock joint and can be found out as explained below:

$$
\begin{array}{ll}
\Delta \mathrm{PN}_{1} \mathrm{~N}, & \tan \mathrm{~F} / 2=\frac{\mathrm{NN}_{1}}{\mathrm{PN}_{1}}=\frac{\mathrm{G} / 2}{\mathrm{M}} \\
\therefore & \mathrm{M}=\mathrm{G} / 2 \cot \mathrm{~F} / 2
\end{array}
$$

1- Turnout with straight switches

In $\Delta \mathrm{BMK} ; \quad \mathrm{BM}=\mathrm{MK}$ (Each being tangent length)
$\angle \mathrm{MBK}=\angle \mathrm{MKB}=\frac{\mathrm{F}-\beta}{2}$
In $\triangle \mathrm{BKC} ; \quad \angle \mathrm{BKC}=\mathrm{F}-\left(\frac{\mathrm{F}-\beta}{2}\right)=\frac{\mathrm{F}+\beta}{2}$
$\mathrm{BC}=\mathrm{AD}-\mathrm{AB}-\mathrm{CD}=\mathrm{AD}-\mathrm{AB}-\mathrm{KP}=\mathrm{G}-\mathrm{d}-\mathrm{wSinF}$
$\mathrm{KC}=\mathrm{BCCot} \frac{\mathrm{F}+\beta}{2}=(\mathrm{G}-\mathrm{d}-\mathrm{wSinF}) \operatorname{Cot} \frac{\mathrm{F}+\beta}{2}$
Lead $=\mathrm{DE}=\mathrm{DP}+\mathrm{PE}=\mathrm{KC}+\mathrm{PE}$

$$
\begin{equation*}
\text { Lead }=(G-d-w \operatorname{SinF}) \operatorname{Cot} \frac{\mathrm{F}+\beta}{2}+w \operatorname{Cos} F \tag{2.1}
\end{equation*}
$$

In $\triangle \mathrm{OBK} ; \quad \angle \mathrm{BOK}=\mathrm{F}-\beta, \quad \mathrm{OB}=\mathrm{OK}=\mathrm{R}$

$$
\begin{equation*}
B K=2 R \operatorname{Sin} \frac{F-\beta}{2} \tag{2.1a}
\end{equation*}
$$

also in $\triangle B K C ; \quad B K=\frac{B C}{\operatorname{Sin} \frac{F+\beta}{2}}=\frac{G-d-w \operatorname{SinF}}{\operatorname{Sin} \frac{F+\beta}{2}}$
equating $\mathrm{Eq} 2.1 \mathrm{a} \& 2.1 \mathrm{~b} ; 2 \mathrm{R} \operatorname{Sin} \frac{\mathrm{F}-\beta}{2}=\frac{\mathrm{G}-\mathrm{d}-\mathrm{w} \operatorname{SinF}}{\operatorname{Sin} \frac{F+\beta}{2}}$
$\therefore \quad \mathrm{R}=\frac{\mathrm{G}-\mathrm{d}-\mathrm{w} \operatorname{Sin} \mathrm{F}}{2 \operatorname{Sin} \frac{\mathrm{~F}+\beta}{2} \operatorname{Sin} \frac{\mathrm{~F}-\beta}{2}}$
Where $\mathrm{R}=$ radius of lead curve, $\mathrm{d}=$ heel divergence

$$
\mathrm{w}=\text { straight leg of crossing ahead of } \mathrm{TNC}, \beta=\text { switch angle }
$$

- The point ' H ' has been shown to lie inside the track, but in certain layouts, depending on the switch angle and/the radius, the point ' H ' may lie outside the track and therefore the value of ' Y ' will work out as negative. The distance ' $B Q$ ' be denoted by ' L '

In $\Delta \mathrm{KOJ}$,

$$
\begin{align*}
& \mathrm{OK}=\mathrm{R}, \quad \angle \mathrm{KOJ}=\mathrm{F}, \quad \angle \mathrm{OJK}=90^{\circ} \\
& \mathrm{JK}=\mathrm{OKSinF}=\mathrm{RSinF} \\
& \mathrm{CK}=(\mathrm{G}-\mathrm{d}-\mathrm{wSinF}) \operatorname{Cot} \frac{\mathrm{F}+\beta}{2} \\
& \mathrm{CJ}=\mathrm{BQ}=\mathrm{L}=\mathrm{JK}-\mathrm{CK} \\
& \therefore \mathrm{CJ}=\mathrm{RSinF}-(\mathrm{G}-\mathrm{d}-\mathrm{w} \operatorname{SinF}) \mathrm{Cot} \frac{\mathrm{~F}+\beta}{2} \tag{2.3}\\
& \mathrm{OI}=\mathrm{OH}+\mathrm{HI}=\mathrm{R}+\mathrm{Y} \tag{2.4}\\
& \text { also, } \mathrm{OI}=\mathrm{OJ}+\mathrm{JI}=\mathrm{RCosF}+\mathrm{G}-\mathrm{wSinF} \tag{2.5}
\end{align*}
$$

equating (2.4) \& (2.5),
$\mathrm{R}+\mathrm{Y}=\mathrm{R} \operatorname{Cos} \mathrm{F}+\mathrm{G}-\mathrm{wSinF}$
$\therefore \mathrm{Y}=\mathrm{G}-\mathrm{w} \operatorname{SinF}-\mathrm{R}(1-\operatorname{Cos} \mathrm{F})$
Note : It is also possible to work out values of 'L' \& 'Y'
directly from $\triangle \mathrm{OBQ}$,

$$
\begin{equation*}
\mathrm{L}=\mathrm{R} \operatorname{Sin} \beta \tag{2.7}
\end{equation*}
$$

$$
\begin{equation*}
\mathrm{Y}=\mathrm{d}-\mathrm{R}(1-\operatorname{Cos} \beta) \tag{2.8}
\end{equation*}
$$

Calculate the lead and the radius of a 1 in 8 turnout with straight switches.

$$
\mathrm{R}=\frac{\mathrm{G}-\mathrm{d}-\mathrm{w} \operatorname{Sin} \mathrm{~F}}{2 \operatorname{Sin} \frac{F+\beta}{2} \operatorname{Sin} \frac{F-\beta}{2}}
$$

$$
=\frac{1435-136-864 \times \operatorname{Sin}_{7}{ }^{0}{ }_{7}{ }^{\prime}{ }_{30.06}^{\prime \prime}}{2 \times \operatorname{Sin} \frac{7^{0}{ }_{7}{ }^{\prime} 30.06+1^{\prime \prime} 34^{\prime} 27^{\prime \prime}}{2} \operatorname{Sin} \frac{7^{0} 7^{\prime} 30.06-1^{0} 34^{\prime} 27^{\prime \prime}}{2}}
$$

$$
=162270.707 \mathrm{~mm} \approx 162271 \mathrm{~mm}
$$

$$
\begin{aligned}
& \text { Given: } G=\mathrm{mm}, \mathrm{~d}=136 \mathrm{~mm}, \mathrm{w}=864 \mathrm{~mm} \\
& \mathrm{~F}=7^{0}{ }_{7}{ }^{\prime}{ }^{30.06} \quad \beta=1^{0} 34^{\prime} 27^{\prime \prime} \\
& \text { Lead }=(G-d-w \operatorname{SinF}) \operatorname{Cot} \frac{F+\beta}{2}+w \operatorname{CosF} \\
& =\left(1435-136-864 \times \operatorname{Sin} 7{ }^{0}{ }_{7}{ }^{\prime}{ }_{30.06}^{\prime \prime}\right) \operatorname{Cot} \frac{7^{0}{ }_{7}{ }^{\prime} 30.06+1^{0} 344^{\prime} 27^{\prime \prime}}{2} \\
& +864 \times \operatorname{Cos} 7^{0}{ }_{7}{ }^{\prime}{ }^{30.06} \\
& =16526.8 \mathrm{~mm} \approx 16527 \mathrm{~mm}
\end{aligned}
$$

2- Turnout with Curved Switches

The lead curves in these layouts at toe of switches are tangential to the switch angle and meets the straight leg of crossing at a distance ' w ' from the TNC of the crossing.

At toe of switch, thickness of tongue rail is ' t '. Derivation for lead curve radius will be same as for straight switches. The same can be derived by substituting ' t ' (toe thickness) for ' d ' (the heel divergence).

$$
\begin{equation*}
C K=(G-t-w \operatorname{Sin} F) \operatorname{Cot} \frac{F+\beta}{2} \tag{2.9}
\end{equation*}
$$

Radius of Lead Curve, $R=\frac{G-t-w \operatorname{SinF}}{2 \operatorname{Sin} \frac{F+\beta}{2} \operatorname{Sin} \frac{F-\beta}{2}}$
$\mathrm{L}=\mathrm{BQ}=\mathrm{CJ}=\mathrm{KJ}-\mathrm{CK}=\mathrm{RSinF}-(\mathrm{G}-\mathrm{t}-\mathrm{w} \operatorname{SinF}) \operatorname{Cot} \frac{\mathrm{F}+\beta}{2}$
or, from $\triangle \mathrm{OQB}$,
$\mathrm{L}=\mathrm{BQ}=\mathrm{RSin} \beta$
$\mathrm{Y}=\mathrm{G}-\mathrm{w} \operatorname{Sin} \mathrm{F}-\mathrm{R}(1-\operatorname{Cos} \mathrm{F})$
Switch Length, $\quad S L=\sqrt{2 R(d-Y)-(d-Y)^{2}}-L$
Lead $=(G-t-w \operatorname{SinF}) \operatorname{Cot} \frac{F+\beta}{2}-S L+w \operatorname{Cos} F$

- Example

Given: $\mathrm{G}=1435 \mathrm{~mm}, \quad \mathrm{~d}=175 \mathrm{~mm}, \quad \mathrm{w}=1877 \mathrm{~mm}$

$$
\mathrm{F}=4^{0} 45^{\prime} 49^{\prime \prime}, \quad \beta=0^{0} 20^{\prime} 0^{\prime \prime}
$$

Calculate the lead and the radius of a 1 in 12 turnout with curved

$$
\begin{aligned}
& \mathrm{R}=\frac{\mathrm{G}-\mathrm{t}-\mathrm{w} \operatorname{SinF}}{2 \operatorname{Sin} \frac{\mathrm{~F}+\beta}{2} \operatorname{Sin} \frac{\mathrm{~F}-\beta}{2}} \\
& =\frac{1435-0-1877 \times \operatorname{Sin} 4^{0} 45^{\prime} 49^{\prime \prime}}{2 \operatorname{Sin} \frac{4^{0} 45^{\prime} 49^{\prime \prime}+0^{0} 20^{\prime} 0^{\prime \prime}}{2} \operatorname{Sin} \frac{4^{0} 45^{\prime} 49^{\prime \prime}-0^{0} 20^{\prime} 0^{\prime \prime}}{2}}
\end{aligned}
$$

$=3721333 \mathrm{~mm}$
In 1 in 12 turnout with curved switches, Stock Rail is machined to house the tongue rail so that there is no projection of thickness of the tongue rail. Hence 't' is taken as zero. Lead $=(G-t-w \operatorname{SinF}) \operatorname{Cot} \frac{F+\beta}{2}+w \operatorname{CosF}-$ Switch Length
$=\left(1435-0-1877 \times \operatorname{Sin} 4^{0} 45^{\prime} 49^{\prime \prime}\right) \operatorname{Cot} \frac{4^{0} 45^{\prime} 49^{\prime \prime}+0^{0} 20^{\prime} 0^{\prime \prime}}{2}$
$+1877 \times \operatorname{Cos} 4^{0} 45^{\prime} 49^{\prime \prime}-10125$
$=20484 \mathrm{~mm}$
NOTE : Switch Length is 10125 mm

Applications

Connections to Straight Parallel Tracks

Type of Layout connections between the straight parallel tracks will be dependent upon the distance between the two tracks and the space availability in the yard. Accordingly distance between the two tracks may be treated as Normall or Large distance.

Diamond Crossing

Diamond crossings

DIAMOND CONFIGURATION

Crossover

- A crossover is a pair of switches that connects two parallel rail tracks, allowing a train on one track to cross over to the other. Like the switches themselves, crossovers can be described as either facing or trailing.
- When two crossovers are present in opposite directions, one after the other, the four-switch configuration is called a double crossover.

Crossover Connection between Straight Parallel Tracks

$(\mathrm{B}+\mathrm{S}+\mathrm{B}) \operatorname{SinF}=\mathrm{D}$

$$
\begin{align*}
& \therefore \mathrm{S}=\frac{\mathrm{D}}{\operatorname{Sin} \mathrm{~F}}-2 \mathrm{~B} \tag{5.1}\\
& \mathrm{X}=\mathrm{DCotF}=\mathrm{DN} \tag{5.2}
\end{align*}
$$

where N is the number of Xing . $(\operatorname{CotF}=\mathrm{N})$

$$
\begin{equation*}
\mathrm{OL}=\mathrm{X}+2 \mathrm{~A} \tag{5.3}
\end{equation*}
$$

First of all the value of ' D ' will be known from the field surveying. Turnout prarameters ' A ', ' B ' will be known once we have decided the type of turnout. Then from Eq 5.2 \& 5.3, the values of ' X ' \& finally 'OL' will be calculated. Now with these values in the hand, location of one of 'SJ' can be fixed by keeping it at a distance ' OL ' apart in reference to another 'SJ'.
After fixing the location of 'SJ', rest of the turnout can be set out by field surveying.

Scissors

If the crossovers overlap in the shape of the letter X , it is dubbed a 'scissors crossover or diamond crossover' in reference to the diamond crossing in the centre. This makes for a very compact track layout at the expense of using a level junction.

The same function can be achieved by two crossovers

 Facing each other.

Single Slip

SINGLE SLIP CONFIGURATION

Double Slip

DOUBLE SLIP CONFIGURATION

Flying Junctions Bridges

Level Junctions

Diamond Crossings

Bridge Guard Rail

Table 19.4 Turnout and Crossover Data for Straight Split Switches*

* Adapted from AREA Trackwork Plans. Comfortable speed added. Column numbers refer to dimensions in Fig. 19.15.

Calculated for turnouts from straight track for 4 - $\mathrm{ft} 81 / 2$-in gage.
Turnouts and crossovers recommended: for main-line high-speed movements, No. 16 or No. 20; for mainline slow-speed movements, No. 12 or No. 10; for yards and sidings to meet general conditions, No. 8 .

